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The threshold effects of synchronous firing are studied in a class of models. The main result is that for
almost all initial conditions, the oscillation system approaches synchrony when the threshold condition

is below a critical value.

PACS number(s): 05.45.+b
I. INTRODUCTION

Mutual synchronization is known to exist in nature.
Examples includes crickets that chirp in unison and
fireflies that flash in synchrony. These phenomena all
start with arbitrary initial conditions and end up in a mu-
tually synchronized state. In his seminal work, Winfree
[1] found that mutual synchronization can occur when
oscillators within a system are strongly attracted to their
limit cycles. A recent proof has been given by Mirollo
and Strogatz [2] on the problem of synchronization of the
“integrate and fire” (IF) oscillators. They show quite
generally that in a class of “all to all”” coupled IF oscilla-
tor systems, mutual synchronization arises in almost all
initial conditions. (Here, “almost all”” means up to a set
of Lebesgue measure zero.) Their work is based on a gen-
eralized version of Peskin’s model [3] which assumes that
the oscillators are identical and each is coupled to all oth-
er oscillators. However, these basic assumptions certain-
ly make the model less realistic. Since in any real system,
such as fireflies flashing in synchrony, synchronization is
only a result of average. (Here, “average” means that it
is only a large portion of the population which is flashing
in synchrony.) As a matter fact, fireflies are not identical
and furthermore, not every firefly responds to all the oth-
ers. Therefore, it would be interesting to see whether or
not synchronization can arise when the above assump-
tions are dropped.

In this work, we provide a partial answer to the case
where the “all to all” condition is removed by introduc-
ing a threshold condition on the coupling between oscilla-
tors. In the model of [2], the oscillators are of the in-
tegrate and fire type and each described by a variable
x,()i=1,...,N). When x,;(¢)=1, the oscillator “fires”
and x;(t ") is set to zero. The other oscillators are then
coupled through this firing process only in the following:
when the ith oscillator “fires,” it pulls all the others up by
an amount &, namely, x;(¢)—x;(z)+¢, for all j5i and
xj(t+)=min(xj(t)+s,1). In our work, we modify the
above coupling condition by introducing a threshold x,.
We require that, when firing occurs, the other oscillators
are pulled up only if their value x; is greater than x,.
Therefore, not every oscillator is pulled during firing.
Our main result is that by assuming that x;(¢) is mono-
tonic and concave downward, there exists a X, such that
when x_ <X, the oscillators become synchronized for all
N and for almost all initial conditions. Our proof is based
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on an extension of the method that was employed by
Mirollo and Strogatz. In the next section, we describe
our model in detail and discuss the synchronization of
two oscillators. The problem of NN oscillators is addressed
in Sec. III. The final section contains the conclusions and
a few comments are made.

II. TWO OSCILLATORS

Model

We will assume that all oscillators have identical dy-
namics and that the state variable x;(¢) of each oscillator
is a monotically increasing function. Furthermore, the
maximum value of x(z) is scaled to 1, i.e., x(¢)E[0,1].
To simplify our problem, we follow the approach of [2]
and assume that x evolves as x=f(¢) with f being
[0,1]—][0,1]. f is a continuous, monotonic, increasing,
and concave downward function of ¢. Here, ¢ is a phase
variable which is related to the period T of the oscillator,
d¢/dt=1/T. We also set £(0)=0and f(1)=1. Our as-
sumptions imply that f'>0 and f"' <0. A particular ex-
ample of this type of oscillator is Peskin’s model with
f(@)=(1—e P /(1—eP). Since f is monotonic, the
inverse of f exists. We denote g =f "' and g(x)=4.
From the assumed properties of f, the function g is also
monotonic increasing but concave upward: g’'>0 and
g''>0. The end points of g are also fixed: g(0)=0 and
g(l)=1.

Due to the fact that f is monotonic, the threshold con-
dition x, can also be specified as ¢.=g(x.) which is
uniquely determined. From now on, we will use ¢, to
specify the threshold effects. To discuss the synchroniza-
tion of the two oscillators 4 and B, let us consider the re-
turn map R(¢4). Suppose that the oscillator 4 has just
fired, thus its phase ¢ , is set to zero and the oscillator B
has a phase ¢z =¢ (see Fig. 1). The return map R(¢) is
then defined to be the phase of B immediately after the
next firing of A. It is easy to see from Fig. 1 that, as ¢,
starts from ¢ and moves toward 1, ¢ , moves from zero
to 1—¢. Therefore we define a firing map which deter-
mines the phase of 4 immediately after B fires,

1—¢, ¢>1—6,
hO= oe+r(1-0)), 61—, . @1
The first condition in (2.1) corresponds to the fact that 4
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FIG. 1. Two oscillators governed by x =f(#) and coupled
by the rule (2.1). (a) The phases of the system right after oscilla-
tor A has fired. (b) The state of the system before B fires. (c)
The state of the system just after B has fired. We have assumed

1—¢>¢,.

is not pulled up by the firing process of B (see Fig. 2).
The return map R(¢) is given in terms of A,

R(¢)=h(h(4)) . 2.2)

Let us observe that ¢ falls into two separate classes:
(@ ¢.>+ and (b) ¢, <1. For the first case, it can be
shown that there exists a window in which R(¢)=¢ and
as a result there is no synchronization.

Theorem 1 . For ¢.>1, if ¢€(1—¢.,¢.), then
R(¢)=¢.

Proof. Since ¢E(1—¢,,¢.), we have ¢ <¢,. which im-
plies 1—¢>1—¢.. The firing map h($) and R(¢) is
given by h(¢)=1—¢ and R($)=h(h($))=h(1—¢)=4¢,
respectively.

Hence, to be able to have synchronization for two os-
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FIG. 2. Two oscillators with a large ¢.. (a) The state of the
system right before B fires. (b) The state of the system just after
B has fired. Since ¢, > 1—4¢, the phase of A4 is not pulled up by
the firing process.

cillators for almost all initial conditions, we have to im-
pose ¢, <. It is obvious that ¢ falls into three separate
domains: (a) §>1—¢,, (b) $<¢,, and (c) ¢, <P=<1—¢,.
It is straightforward to show that, for both cases (a) and
(b), the system ends up in synchrony. This is due to the
fact that R(¢) has no fixed point within these regions.
First, we show that if ¢, <1 and ¢>1—¢., R'() is al-
ways greater than 1. This can be seen as follows: if
¢.<+ and ¢>1—¢, then we have 1—¢p<1—¢.. As a
result, R(¢)=g(e+f(4)) and R'($)=g'f’, hence
R'=g'(e+f(4))/g'(f(¢)) where we have used the fact
that f'=1/g’. Since g’ >0, we have R'>1 as claimed.
By using R'>1, we proceed to show the following
theorem.

Theorem 2. If ¢. <1 and ¢>1—¢_, then R(4) has no
fixed point and R (¢) > ¢.

Proof. Since we have shown R(4)=g(e+f(¢)), to-
gether with g’ >0, it is obvious that R(#)>¢. This fact
indicates that R(¢) approaches 1 if R(¢) has no fixed
point. Let us consider the function K(¢)=¢—R(4).
The domain of R(¢) is D=[1—¢,g(1—¢)], where
¢ <g(1—¢) comes from the requirement that R(¢)<1,
otherwise we already have synchronization.

It is easy to see that the domain is not empty. If
g(l—e)<1—¢, were true, it implies e>1—f(1—¢,)
and hence R(¢)=gl(e+f($))>g(1+f(d)—f(1—6.)),
which is greater than 1 and leads to contradiction.
Therefore we have 1—¢, <g(1—¢). This result also im-
poses a constraint on € and ¢, namely, e <1— f(1—¢,).

We can now proceed to show that R(¢) has no fixed
point. Let us consider the values of K at the end points
of D,

K(1—¢,)=1—¢,—gle+f(1—¢,)) ,

K[g(1—g)]=g(1—¢g)—1.

It is obvious that K(1—¢,.)<0 and K[g(1—¢)]<0. The
derivative of K is

K'=1-R'=1-8EX/(@) (2.3)
g'(f($))

As we have shown earlier that R’> 1, hence K' <0 and
does not vanish inside D. Therefore, K does not vanish in
D and R has no fixed point.

For the case where ¢ <¢., we can proceed in a similar
fashion and show that R (¢) has no fixed point either. We
state the result as a theorem.

Theorem 3. If ¢, <1 and ¢ <4, then R(¢$)<¢ and
R(¢) has no fixed point.

Proof. First we show that, for this case, R'(¢)> 1. Itis
easy to see that

h(¢)=g(e+f(1—¢)) (2.4)
and

R(¢)=1—g(e+f(1—9¢)). (2.5)
Hence,

’ —_ L ,(8 f(l ))
R = =8 (et f(1—¢))
(¢)=g'f 2 (f(1=9)) >1,
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where we have used g’ >0. From (2.5), it is obvious that
R(¢)<¢. Let us consider the function K(¢)=¢—R(¢).
As in the previous theorem, we will show that K does not
vanish in its domain which, in this case, is D=(5,4,).
Here & is given by 1—g(1—¢) which comes from the fact
that h(¢) does not synchronize. The values of K at the
end points of D are

K(8)=1—g(1—¢)>0,
K¢, )=gle+f(1—¢.))—(1—¢.)>0.

The derivative of K is

K,=1+g’(s+f(l—g))

2 (F(1—9)) (2.6)

and is obviously greater than 1. Hence we conclude that
K is nonvanishing which implies that R has no fixed point
as claimed.

The remaining case where ¢E(d.,1—¢,) is different
from the previous discussions because R(¢) has a fixed
point in this case. Fortunately, the fixed point is a repel-
ler and its proof is very similar to the one given by Mirol-
lo and Strogatz [2].

To show that R(¢) has a repelling fixed point, we first
show that the domain of h(¢) is given by (8;,1—¢,),
where 8, =[1—g(f(1—¢.)—¢€)]>¢.. This can be seen
by noting that if h(¢)=g(e+f(1—¢))>1—¢. then
R(¢)=[1—gle+f(1—¢))]<¢. and according to
theorem 3 the system will synchronize. Hence we only
need to consider g(e+f(1—¢))<1—¢, which implies
o>[1—g(f(1—¢.)—€)]=8,.

However, the domain D of R(¢) is only a subset of
(8;,1—¢.) [it is easy to see that when R($)<8, or
R(¢)>1—¢,, according to the previous theorem, the
system will synchronize] and it can be shown that
D =(8,,8,) with &, given by # ~'(8,). There is a possibili-
ty that 8, <5, and as a result D is an empty set. If §, <9,
then h(h(8,)) <h(h(8,)) (this is from the fact that g is a
monotonic increasing function). Explicitly we have

h(h(8,))=h(8))=1—¢, . ,
h(h(5)))=gle+f(4.)) .
Thus, 8, <8, implies

glet+flo N>1—¢, .

This is equivalent to, say, € > f(1—¢,)— f(4.) and hence
h(p)=g(e+f(1—¢))>1—¢.. However, h(d)>1—¢, is
just the conclusion that we obtained in the previous para-
graph where synchronization occurs. Similarly, one can
show that if e> f(1—¢,)—f(¢.), then §,>8,. Thus we
only have to consider §, < §,.

We can now proceed to show that there is a fixed point
within D. The proof is the same as given in [2]. We in-
troduce a function F(¢)=¢—h(4). It is not hard to see
that a fixed point of 4 is also a fixed point of R(¢). Let us
calculate F(8,) and F(§,) as
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F(8))=8,—h(6))=¢.—g(f(1—¢)—¢),
F(SQ):SZ-h(Sz)
282—81 >O

if F(8;)>0, then ¢.>g(f(1—¢,)—¢) and it is equivalent
toe>f(1—¢.)—f(¢.), but this is a contradiction to the
fact that §,>8,. Therefore F(8;) must be negative.
Thus, F(¢)=0 has a root which is determinated by
g(g*)=¢*.

From F'(¢)=1—h'(¢) and h'(¢)=—g'(e+f(1
—¢))/g'(f(1—4¢)), noting that g"’>0 we have F'(¢)
>2. Hence F(¢) only crosses the ¢ axis once. Similarly,
R'(¢)=h'(g)h'(¢$)> 1 which also implies that ¢* is also a
unique fixed point of R and we have

R($)>¢ if ¢>¢*,
R($)<¢ if p<o* .

Therefore ¢* is a repeller. We have shown in this section
that there exists a critical threshold value X, = f (1), such
that when x, <X, a two-oscillator system synchronizes
for almost all initial conditions.

III. N OSCILLATORS

Note that, since ¢, > does not lead to synchroniza-
tion for the case of two oscillators, it is not possible to
have synchrony for N =>2. Therefore, we only concen-
trate on the case where ¢, < 1.

Since the oscillators are identical, the set of phases of N
oscillators can be presented by the set

S={(¢,...,dy_)ERN!
with 0<¢,<p,< "+ <dy_; <1}, (3.1
where we have put ¢,=0. Let ¢=(¢,,...,d5_) be the

set of phases right after a firing, and the firing map 4 is
defined as the product of two operations. The first opera-
tion, which produces the phase right before the next
firing, is given by the affine mapping 0: RV ' >RV

(g, ..., oy )=(1—¢dy_1,¢,+1
B SR TR SRS b bl JURRY)
=(Ul""7UN—l)' (3.2)

After the firing occurs, the new phases are obtained by
the map 7 where

oy, ..., on_1)=(glay),...,gloy_1)) (3.3)
where g is given by
o, ¢.>0
8= lg(e+£(0), ¢.%0. G4
The firing map 4 is then given by
h(¢p)=1(c(d)) (3.5

which describes the phases right after firing. It is obvious
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that S is invariant under o, but not under 7. This is due
to the fact that f(oy_,)+e=>1 is possible. When this
happens, the oscillator N —1 has brought the oscillator
N —2 together with it and they move together as one; the

S£={(¢1! s

ydy_1)ES such that f(¢y_,+1—¢y_)+e<l}.

number of oscillators is then reduced from N to N —1.
This event is called an absorption.

Because of the existence of absorption, the domain of 4
is not all of S. In fact, the domain is the set

(3.6)

Note that, due to the absorption process, the oscillators move together as a single oscillator, which has a pulse
strength € being the sum of the pulse strengths of the individual oscillator. Thus it is necessary to allow nonidentical
pulse strengths in our discussions. It turns out that synchronization does not require identical pulse strengths for all os-

cillators.

First, we state a few facts about the firing map 4 and the return map R =hyhy_,. .. h;, where h; means that the os-
cillator strength is €;. Let us consider a particular type of initial conditions where all ¢;(i =1-N —1) are less than ¢,

and are denoted by

¢, ={(¢1,¢5 ..., dy—1) where ¢, <¢,<

It is obvious that the firing map 4 implies

hi(¢,)={g(e;+f(1—¢yn_1))g(e;+f(1—¢IN —1+4))),...

It is easy to see that the return map

R(¢,)={(¢},82 - . .,dNy_1) such that ¢} <¢;<

T <dy_1<¢.} -

8ley+f(1—dy_1+dy_5))} .

e <Py-1<9c)

where ¢; <¢; if at least one of the g;7<0. It is clear that R does not have a fixed point and these kind of initial condi-

tions always leads to synchronization.
For the case where ¢, = {(4, . . .

RN, = (81,65 . . -, 1) with ;<)<

,On 1) with 1 =@, <d; <5, . .

T <Py-1<¢}

.y <¢n_1}, we have

(3.7)

and as a result of the previous paragraph, we conclude that ¢, also ends up in synchrony. By using these facts of the re-

turn map, we have the following theorem.

Theorem 4. Let A; be the set of initial conditions that will have at least i firings before an absorption occurs, namely,

A;={¢ES such that €S ,h,($)ES,,h h ($)ES,,.

. ,hi_lhi_z. .. h1(¢)ES6‘}

and 4=\ 7_, A;, which is the set of initial conditions that live forever without any absorptions. Then A has the Le-

besgue measure zero.

Proof. 1t is obvious that A is invariant under R, i.e.,
R (A)C A and R is one to one on its domain. Let us con-
sider the Jacobian determinant of R

N
det(DR)= [T det(Dh;)

i=1

N
=] det(D;)det(Do) .

(3.8)
i=1
By using the fact that oY =1 we have
N
|det(DR)|= | [] det(D;) | . (3.9)
i=1
The determinant of D; is given by
N—1
det(D7;)|,= [ &'f'(ox) - (3.10)
k=1

For any (0,0,,...,05_,), there is a possibility where
det(D7;)|,=1. This is corresponding to the case where
oy <¢. for all k and resulting in g'=g’(f (o)), hence
g'f'=g'(g')"!=1 as shown in Sec. II. However, this
possibility is excluded from A since such o implies

I

synchronization which is contradicted to the assumption
of A. Hence at least one factor on the right-hand side of
(3.10) is not 1,

g'(e;+f(oy))
g'(floy))

Therefore, by using the fact g’’ >0 and at least one ;70
we conclude that |det(DR)|>1. Since R(A)C 4,
|det(DR)| > 1 implies A has measure zero.

We have shown that the set of initial conditions which
live forever without any absorptions has a Lebesgue mea-
sure zero. To complete our proof on the problem of
synchronization with threshold effects, we turn now to
the discussion of the set of initial conditions which allow
absorptions. What we need to show is that the set of ini-
tial conditions which, after a finite number of absorp-
tions, live forever without ending in synchrony has a
measure zero.

Due to the process of absorptions, we have to intro-
duce a new notation. The state of the N oscillator was
previously denoted by ¢=(é;,...,¢,) with n =N —1
and ¢ €S with S defined in (3.5). We now replace S with
S,, the subscript n showing explicitly the number of os-

g'flloy)= (3.11)
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cillators. When absorption occurs, the number of vari-
ables for describing the system gets reduced. Suppose
that ¢ €S, gets absorbed by 4, to S,; what it means is
that the oscillators corresponding to €,,€3,...,€, x4
have been absorbed by the oscillator corresponding ;.
These oscillators thus form a group which moves togeth-
er with a combined pulsed strength €, +¢,+ - €, _; ..
The new state vector ¢ES, is now denoted by
d=(d, 05 . .., ;) with a new pulse strength

L — ’ — L—
E1=€ k42 Ep 1= EE =L e, g

This absorption process continues until it reaches syn-
chrony (k =0) or gets stuck forever at some stage with
k >0. Let us define B as the set of initial conditions in S,
which, upon iterations of A; with the & sequence
£1,€5 . . ., €, 4+, Never reach synchrony. Then we prove
the following theorem on B.

Theorem 5. The set B has Lebesgue measure zero.

hi(¢)=[0,0,...

where we have explicitly assumed some of the o, are
below ¢, (for our case o,,...,0;<¢,). o(@) is defined
as o(¢)=(oy,...,0,). Hence (0,,...,0,)E7'Z,
where 7, is the map acting on S). It is obvious that 7, is
a diffeomorphism, therefore the measure of 7, !Z van-
ishes. This implies that the projection of 0B ; to Sy has
zero measure. Since o is also a diffeomorphism, we con-
clude that the measure of B, ; is zero.
For r > 1, we have

hr—lhr—Z.”hlBr,kCBl,k . (314)

Since each h; is a diffeomorphism, hence B, , has zero
measure for all k, r > 1.

IV. CONCLUSIONS

For the integrate and fire models, we have shown that,
by including threshold effects, synchronization can also
occur for almost all initial conditions when the threshold
condition ¢, is less than J. For the two-oscillator system,
as ¢, >+, we explicitly show that there exists a window

,g(£1+f(01)),g(€1+f(01+1)), oo
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Proof. We will prove this theorem by induction. Sup-
pose the theorem is true for all € sequences g, . ..,€, on
Sy, with k <n. Let B, be the set of ¢ EB such that ¢
survives the applications of A,,...,h,_,, and then gets
absorbed by A, to S,. Thus

B=4y

r21;1<k<n

B, . (3.12)
Since the measure of A is zero, in order to show that the
measure of B vanishes, we have to establish the fact that
the measure of each B, is zero. Our proof is identical to
the one given by Mirollo and Strogatz [2]. Let us start
with B , which consists of points absorbed by A, to S,.
By induction, these points must be absorbed into a set Z
in S, where Z has measure zero. This is due to the fact
that, in any problem in S,, the set of points which do not
reach synchrony has measure zero. Suppose
¢=(éy,...,¢,)EB, , and Z are the set of measure zero.
Under the application of 4, we have

,8ley +floNIEZ , (3.13)

f

(1—¢.,¢.) in which synchronization does not happen.
In fact, for any ¢E€(1—¢,,4.), the return map R is an
identity mapping, R(¢)=¢. Intuitively, it is easy to see
that when ¢, get close to 1, the possibility of having
synchronization is unfavorable, since ¢, =1 always im-
plies R(¢)=¢. Furthermore, when ¢, =0, it is shown by
Mirollo and Strogatz that almost all initial conditions end
up in synchrony. Thus, it is no surprise that the same re-
sult can also occur as ¢, moves away from zero. This
work provides the analytical proof for arbitrary ¢,.. As
pointed out in [2], this kind of model neglects the spatial
structure in the discussion. Also, fluctuation effects such
as temperature, etc., are not included. Therefore the
question of stability should be addressed. We hope to re-
turn to these questions in the future.
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